Photonic neural network has been sought as an alternative solution to surpass the efficiency and speed bottlenecks of electronic neural network. Despite that the integrated Mach–Zehnder Interferometer (MZI) mesh can perform vector-matrix multiplication in photonic neural network, a programmable in-situ nonlinear activation function has not been proposed to date, suppressing further advancement of photonic neural network. Here, we demonstrate an efficient in-situ nonlinear accelerator comprising a unique solution-processed two-dimensional (2D) MoS2 Opto-Resistive RAM Switch (ORS), which exhibits tunable nonlinear resistance switching that allow us to introduce nonlinearity to the photonic neuron which overcomes the linear voltage-power relationship of typical photonic components. Our reconfigurable scheme enables implementation of a wide variety of nonlinear responses. Furthermore, we confirm its feasibility and capability for MNIST handwritten digit recognition, achieving a high accuracy of 91.6%. Our accelerator constitutes a major step towards the realization of in-situ photonic neural network and pave the way for the integration of photonic integrated circuits (PIC).
Researcher/Author: Zefeng Xu (NUS), Baoshan Tang (NUS), Xiangyu Zhang, (NUS) Jin Feng Leong (NUS), Jieming Pan (NUS), Sonu Hooda (NUS), Evgeny Zamburg (NUS), Aaron Voon-Yew Thean (NUS)