Sidebar


Publications   2022


Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials’ Multifunctionalities

Publication

Soft Modular Glove

Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions.

Researcher/Author: Minglu ZhuZhongda Sun, Chengkuo Lee

ACS Nano 2022, 16, 9, 14097–14110

Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care

Publication

IOT 070422

In the Internet of Things (IoT) era, various devices (e.g., sensors, actuators, energy harvesters, etc.) and systems have been developed toward the realization of smart homes/buildings and personal health care. These advanced devices can be categorized into ambient devices and wearable devices based on their usage scenarios, to enable motion tracking, health monitoring, daily care, home automation, fall detection, intelligent interaction, assistance, living convenience, and security in smart homes. With the rapidly increasing number of such advanced devices and IoT systems, achieving fully self-sustained and multimodal intelligent systems is becoming more and more important to realize a sustainable and all-in-one smart home platform. Hence, in this Review, we systematically present the recent progress of the development of advanced materials, fabrication techniques, devices, and systems for enabling smart home and health care applications. First, advanced polymer, fiber, and fabric materials as well as their respective fabrication techniques for large-scale manufacturing are discussed. After that, functional devices classified into ambient devices (at home ambiance such as door, floor, table, chair, bed, toilet, window, wall, etc.) and wearable devices (on body parts such as finger, wrist, arm, throat, face, back, etc.) are presented for diverse monitoring and auxiliary applications. Next, the current developments of self-sustained systems and intelligent systems are reviewed in detail, indicating two promising research directions in this field. Last, conclusions and outlook pinpointed on the existing challenges and opportunities are provided for the research community to consider

Researcher/Author: Qiongfeng Shi, Yanqin Yang, Zhongda SunChengkuo Le

ACS Mater. Au 2022, 2, 4, 394–435

  • Home
  • Publications – 2022